@@ -1,58 +0,0 @@ JUC原子类: CAS, Unsafe和原子类详解 | 凤凰涅槃进阶之路

JUC原子类: CAS, Unsafe和原子类详解

Abel sun2022年12月24日
约 1196 字大约 4 分钟

JUC原子类: CAS, Unsafe和原子类详解

Java原子类是通过UnSafe类实现的,这节主要分析下UnSafe类。UnSafe类在J.U.C中CAS操作有很广泛的应用。

1. 简介

Unsafe是位于sun.misc包下的一个类,主要提供一些用于执行低级别、不安全操作的方法

  • 如直接访问系统内存资源
  • 自主管理内存资源等

这些方法在提升Java运行效率、增强Java语言底层资源操作能力方面起到了很大的作用。

1.1 Unsafe类的指针风险

但由于Unsafe类使Java语言拥有了类似C语言指针一样操作内存空间的能力,这无疑也增加了程序发生相关指针问题的风险。在程序中过度、不正确使用Unsafe类会使得程序出错的概率变大,使得Java这种安全的语言变得不再“安全”,因此对Unsafe的使用一定要慎重。

1.2 Unsafe 类的使用受限制

这个类尽管里面的方法都是 public 的,但是并没有办法使用它们,JDK API 文档也没有提供任何关于这个类的方法的解释。总而言之,对于 Unsafe 类的使用都是受限制的,只有授信的代码才能获得该类的实例,当然 JDK 库里面的类是可以随意使用的。

2. Unsafe 总体功能

先来看下这张图,对UnSafe类总体功能:

image-20220523213917758

如上图所示,Unsafe提供的API大致可分为内存操作、CAS、Class相关、对象操作、线程调度、系统信息获取、内存屏障、数组操作等几类,下面将对其相关方法和应用场景进行详细介绍。

3. Unsafe与CAS

反编译出来的代码:

public final int getAndAddInt(Object paramObject, long paramLong, int paramInt)
  {
    int i;
    do
      i = getIntVolatile(paramObject, paramLong);
    while (!compareAndSwapInt(paramObject, paramLong, i, i + paramInt));
    return i;
  }

  public final long getAndAddLong(Object paramObject, long paramLong1, long paramLong2)
  {
    long l;
    do
      l = getLongVolatile(paramObject, paramLong1);
    while (!compareAndSwapLong(paramObject, paramLong1, l, l + paramLong2));
    return l;
  }

  public final int getAndSetInt(Object paramObject, long paramLong, int paramInt)
  {
    int i;
    do
      i = getIntVolatile(paramObject, paramLong);
    while (!compareAndSwapInt(paramObject, paramLong, i, paramInt));
    return i;
  }

  public final long getAndSetLong(Object paramObject, long paramLong1, long paramLong2)
  {
    long l;
    do
      l = getLongVolatile(paramObject, paramLong1);
    while (!compareAndSwapLong(paramObject, paramLong1, l, paramLong2));
    return l;
  }

  public final Object getAndSetObject(Object paramObject1, long paramLong, Object paramObject2)
  {
    Object localObject;
    do
      localObject = getObjectVolatile(paramObject1, paramLong);
    while (!compareAndSwapObject(paramObject1, paramLong, localObject, paramObject2));
    return localObject;
  }

从源码中发现,内部使用自旋的方式进行CAS更新(while循环进行CAS更新,如果更新失败,则循环再次重试)。

又从Unsafe类中发现,原子操作其实只支持下面三个方法。

public final native boolean compareAndSwapObject(Object paramObject1, long paramLong, Object paramObject2, Object paramObject3);

public final native boolean compareAndSwapInt(Object paramObject, long paramLong, int paramInt1, int paramInt2);

public final native boolean compareAndSwapLong(Object paramObject, long paramLong1, long paramLong2, long paramLong3);

我们发现Unsafe只提供了3种CAS方法:compareAndSwapObject、compareAndSwapInt和compareAndSwapLong。都是native方法

4. Unsafe底层compareAndSwap 的实现

不妨再看看Unsafe的compareAndSwap 方法来实现CAS操作,它是一个本地方法,实现位于unsafe.cpp中。

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
  UnsafeWrapper("Unsafe_CompareAndSwapInt");
  oop p = JNIHandles::resolve(obj);
  jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
  return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END
    

可以看到它通过 Atomic::cmpxchg 来实现比较和替换操作。其中参数x是即将更新的值,参数e是原内存的值。

如果是Linux的x86,Atomic::cmpxchg方法的实现如下:

inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
  int mp = os::is_MP();
  __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"
                    : "=a" (exchange_value)
                    : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
                    : "cc", "memory");
  return exchange_value;
}

    

而windows的x86的实现如下:

inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
    int mp = os::isMP(); //判断是否是多处理器
    _asm {
        mov edx, dest
        mov ecx, exchange_value
        mov eax, compare_value
        LOCK_IF_MP(mp)
        cmpxchg dword ptr [edx], ecx
    }
}

// Adding a lock prefix to an instruction on MP machine
// VC++ doesn't like the lock prefix to be on a single line
// so we can't insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0  \
                       __asm je L0      \
                       __asm _emit 0xF0 \
                       __asm L0:

如果是多处理器,为cmpxchg指令添加lock前缀。反之,就省略lock前缀(单处理器会不需要lock前缀提供的内存屏障效果)。这里的lock前缀就是使用了处理器的总线锁(最新的处理器都使用缓存锁代替总线锁来提高性能)。

cmpxchg(void* ptr, int old, int new),如果ptr和old的值一样,则把new写到ptr内存,否则返回ptr的值,整个操作是原子的。在Intel平台下,会用lock cmpxchg来实现,使用lock触发缓存锁,这样另一个线程想访问ptr的内存,就会被block住。

参考文章

JUC原子类: CAS, Unsafe和原子类详解open in new window

评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v2.9.1