@@ -1,58 +0,0 @@ Redis保证缓存与数据库双写时的数据一致性 | 凤凰涅槃进阶之路

Redis保证缓存与数据库双写时的数据一致性

Abel sun2022年12月24日约 2213 字大约 7 分钟

Redis保证缓存与数据库双写时的数据一致性

1.引言

  • 在读取缓存方面的方案流程图

image-20191008234809789

  • 更新缓存方面

    对于更新完数据库,是更新缓存,还是删除缓存,又或者是先删除缓存,再更新数据库,其实大家存在很大的争议。

2. 三种更新策略

  1. 先更新数据库,再更新缓存
  2. 先删除缓存,再更新数据库
  3. 先更新数据库,再删除缓存(推荐)

2.1 先更新数据库,再更新缓存

这套方案,大家是普遍反对的。为什么呢?有如下两点原因。

原因1:(线程安全角度)

同时有请求A和请求B进行更新操作,那么会出现 (1)线程A更新了数据库 (2)线程B更新了数据库 (3)线程B更新了缓存 (4)线程A更新了缓存 这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。

原因二(业务场景角度) 有如下两点: (1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。 (2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

2.2 先删缓存,在更新数据库(争议最大)

)请求A进行写操作,删除缓存 (2)请求B查询发现缓存不存在 (3)请求B去数据库查询得到旧值 (4)请求B将旧值写入缓存 (5)请求A将新值写入数据库 上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。 那么,如何解决呢?采用延时双删策略 伪代码如下

public void write(String key,Object data){
        redis.delKey(key);
        db.updateData(data);
        Thread.sleep(1000);
        redis.delKey(key);
    }

转化为中文描述就是 (1)先淘汰缓存 (2)再写数据库(这两步和原来一样) (3)休眠1秒,再次淘汰缓存 这么做,可以将1秒内所造成的缓存脏数据,再次删除。 那么,这个1秒怎么确定的,具体该休眠多久呢? 针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。 如果你用了mysql的读写分离架构怎么办? ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。 (1)请求A进行写操作,删除缓存 (2)请求A将数据写入数据库了, (3)请求B查询缓存发现,缓存没有值 (4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值 (5)请求B将旧值写入缓存 (6)数据库完成主从同步,从库变为新值 上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。 采用这种同步淘汰策略,吞吐量降低怎么办? ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。 第二次删除,如果删除失败怎么办? 这是个非常好的问题,因为第二次删除失败,就会出现如下情形。还是有两个请求,一个请求A进行更新操作,另一个请求B进行查询操作,为了方便,假设是单库: (1)请求A进行写操作,删除缓存 (2)请求B查询发现缓存不存在 (3)请求B去数据库查询得到旧值 (4)请求B将旧值写入缓存 (5)请求A将新值写入数据库 (6)请求A试图去删除请求B写入对缓存值,结果失败了。 ok,这也就是说。如果第二次删除缓存失败,会再次出现缓存和数据库不一致的问题。 如何解决呢? 具体解决方案,且看博主对第(3)种更新策略的解析。

2.3 先更新数据库,再删除缓存

首先,先说一下。老外提出了一个缓存更新套路,名为《Cache-Aside pattern》open in new window。其中就指出

  • 失效:应用程序先从cache取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。
  • 命中:应用程序从cache中取数据,取到后返回。
  • 更新:先把数据存到数据库中,成功后,再让缓存失效。

这种情况不存在并发问题么? 不是的。假设这会有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生 (1)缓存刚好失效 (2)请求A查询数据库,得一个旧值 (3)请求B将新值写入数据库 (4)请求B删除缓存 (5)请求A将查到的旧值写入缓存 ok,如果发生上述情况,确实是会发生脏数据。 然而,发生这种情况的概率又有多少呢? 发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。 假设,有人非要抬杠,有强迫症,一定要解决怎么办? 如何解决上述并发问题? 首先,给缓存设有效时间是一种方案。其次,采用策略(2)里给出的异步延时删除策略,保证读请求完成以后,再进行删除操作。 还有其他造成不一致的原因么? 有的,这也是缓存更新策略(2)和缓存更新策略(3)都存在的一个问题,如果删缓存失败了怎么办,那不是会有不一致的情况出现么。比如一个写数据请求,然后写入数据库了,删缓存失败了,这会就出现不一致的情况了。这也是缓存更新策略(2)里留下的最后一个疑问。 如何解决? 提供一个保障的重试机制即可,这里给出两套方案。 方案一: 如下图所示

image-20191008235658639

流程如下所示 (1)更新数据库数据; (2)缓存因为种种问题删除失败 (3)将需要删除的key发送至消息队列 (4)自己消费消息,获得需要删除的key (5)继续重试删除操作,直到成功 然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。 方案二

image-20191008235715281

流程如下图所示: (1)更新数据库数据 (2)数据库会将操作信息写入binlog日志当中 (3)订阅程序提取出所需要的数据以及key (4)另起一段非业务代码,获得该信息 (5)尝试删除缓存操作,发现删除失败 (6)将这些信息发送至消息队列 (7)重新从消息队列中获得该数据,重试操作。

评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v2.9.1